Typical Problems and Applied Treatments for a Non-fish Bearing Upgraded Stream Crossing

Problem condition (before)

A - Diversion potential
B - Road surface and ditch drain to stream
C - Undersized culvert high in fill with outlet erosion

Treatment standards (after)

A - No diversion potential with critical dip installed near hingeline
B - Road surface and ditch disconnected from stream by rolling dip and ditch relief culvert
C - 100-year culvert set at base of fill
Armoring Fill Faces to Upgrade Stream Crossings

Problem: Culvert set high in outboard fill has resulted in scour of the outboard fill face and natural channel.

Conditions: The existing stream crossing has a culvert sufficient in diameter to manage design stream flows and has a functional life.

Action: The area of scour is backfilled with rip-rap to provide protection in the form of energy dissipation for the remaining fill face and channel.

Treatment Specifications:
1) Placement of rip-rap should be between the left and right hingelines and extend from a keyway excavated below the existing channel base level at the base of the fill slope up and under the existing culvert.
2) Rock size and volume is determined on a site by site basis based on estimated discharge and existing stream bed particle size range (See accompanying road log).

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / FAX: 707-773-1451 / www.pacificwatershed.com
Typical Design of a Non-fish Bearing Culverted Stream Crossing

<table>
<thead>
<tr>
<th>Existing</th>
<th>Upgraded</th>
<th>Upgraded (preferred)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Culvert not placed at channel grade.
2. Culvert does not extend past base of fill.
3. Excavation in preparation for upgrading culverted crossing

- Road tread
- Old culvert
- Excavation to original stream bed
- 1:1

4. Excavation to original stream bed
5. Road tread

6. Upgraded stream crossing culvert installation

- Critical dip axis over down road hingeline
- Rock free soil or gravel
- Backfill compacted in 0.5 to 1 foot lifts

7. Downspout added to extend outlet past road fill.

8. Culvert placed at channel grade.
9. Culvert inlet and outlet rest on, or partially in, the original streambed.

Note:
Road upgrading tasks typically include upgrading stream crossings by installing larger culverts and inlet protection (trash barriers) to prevent plugging. Culvert sizing for the 100-year peak storm flow should be determined by both field observation and calculations using a procedure such as the Rational Formula.

Stream crossing culvert Installation
1. Culverts shall be aligned with natural stream channels to ensure proper function, and prevent bank erosion and plugging by debris.
2. Culverts shall be placed at the base of the fill and the grade of the original streambed, or downspouted past the base of the fill.
3. Culverts shall be set slightly below the original stream grade so that the water drops several inches as it enters the pipe.
4. To allow for sagging after burial, a camber shall be between 1.5 to 3 inch per 10 feet culvert pipe length.
5. Backfill material shall be free of rocks, limbs or other debris that could dent or puncture the pipe or allow water to seep around pipe.
6. First one end then the other end of the culvert shall be covered and secured. The center is covered last.
7. Backfill material shall be tamped and compacted throughout the entire process:
 - Base and side wall material will be compacted before the pipe is placed in its bed.
 - Backfill compacting will be done in 0.5 - 1 foot lifts until 1/3 of the diameter of the culvert has been covered. A gas powered tamper can be used for this work.
8. Inlets and outlets shall be armored with rock or mulched and seeded with grass as needed.
9. Trash protectors shall be installed just upstream from the culvert where there is a hazard of floating debris plugging the culvert.
10. Layers of fill will be pushed over the crossing until the final designed road grade is achieved, at a minimum of 1/3 to 1/2 the culvert diameter.

Erosion control measures for culvert replacement
Both mechanical and vegetative measures will be employed to minimize accelerated erosion from stream crossing and ditch relief culvert upgrading. Erosion control measures implemented will be evaluated on a site by site basis. Erosion control measures include but are not limited to:
1. Minimizing soil exposure by limiting excavation areas and heavy equipment disturbance.
2. Installing filter windrows of slash at the base of the road fill to minimize the movement of eroded soil to downslope areas and stream channels.
3. Retaining rooted trees and shrubs at the base of the fill as “anchor” for the fill and filter windrows.
4. Surface erosion on exposed cuts and fills will be minimized by mulching, seeding, planting, compacting, armoring, and/or benching prior to the first rains.
5. Excess or unusable soil will be stored in long term spoil disposal locations that are not limited by factors such as excessive moisture, steep slopes greater than 10%, archeological potential, or proximity to a watercourse.
6. Straw bales and/or silt fencing will be employed where necessary to control runoff within the construction zone.

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / Fax: 707-773-1451 / www.pacificwatershed.com

Typical Drawing #2
Typical Design of a Single-post Culvert Inlet Trash Rack

Cross section view

D - Culvert diameter
D* - If the culvert is designed for the 100-year peak storm flow, the trash rack height above the streambed should equal D.

If the culvert is undersized, then the trash rack needs to be extended vertically above the streambed to match or exceed the expected headwall height.

Plan view

Notes:
1. Many materials can be used for a single-post trash rack including old railroad track, galvanized pipe, and fence posts.

2. The diameter of single-post trash racks should be sized based on the size of expected woody debris. As a basic rule of thumb, the diameter of the trash rack should be equal to the diameter of the expected woody debris up to 4 inches.
Typical Design of Stream Crossing Fill Armor

Fill angles ≤26.5˚ (2:1) Fill angles 26.5˚ - 35˚ (1.5:1) Fill angles 35˚ - 45˚ (1:1)

- Road tread
- Road fill
- Original channel
- Culvert

No rock armor needed Armor 1/4 up fill face Armor 3/4 way up fill face

Fill angles 26.5˚ - 35˚ (1.5:1)

Fill angles 35˚ - 45˚ (1:1)

Note:
Road upgrading tasks typically include upgrading stream crossings by installing larger culverts and inlet protection (trash barriers) to prevent plugging. Culvert sizing for the 100-year peak storm flow should be determined by both field observation and calculations using a procedure such as the Rational Formula.

Stream crossing culvert Installation

1. Culverts shall be aligned with natural stream channels to ensure proper function, and prevent bank erosion and plugging by debris.
2. Culverts shall be placed at the base of the fill and the grade of the original streambed or downspouted past the base of the fill.
3. Culverts shall be set slightly below the original stream grade so that the water drops several inches as it enters the pipe.
4. To allow for sagging after burial, a camber shall be between 1.5 to 3 inch per 10 feet culvert pipe length.
5. First one end and then the other end of the culvert shall be covered and secured. The center is covered last.
6. Backfill material shall be free of rocks, limbs or other debris that could dent or puncture the pipe or allow water to seep around pipe.
7. Backfill material shall be tamped and compacted throughout the entire process:
 - Base and side wall material will be compacted before the pipe is placed in its bed.
 - Backfill compacting will be done in 0.5 - 1 foot lifts until 1/3 of the diameter of the culvert has been covered. A gas powered tamper can be used for this work.
8. Inlets and outlets shall be armored with rock or mulched and seeded with grass as needed.
9. Trash protectors shall be installed just upstream from the culvert where there is a hazard of floating debris plugging the culvert.
10. Layers of fill will be pushed over the crossing until the final designed road grade is achieved, at a minimum of 1/3 to 1/2 the culvert diameter.

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / Fax: 707-773-1451 / www.pacificwatershed.com

Typical Drawing #4
Typical Dimensions Refered to for Armored Fill Crossings

Widths in oblique view

[Diagram showing Width at OBR and Width at BOT]

OBR - Outboard edge of road
BOT - Bottom of excavation

Lengths in profile view

[Diagram showing Length back from OBR and Length OBR - BOT]

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385/ FAX: 707-773-1451/ www.pacificwatershed.com
Typical Armored Fill Crossing Installation

Cross section parallel to watercourse
- Armor placed on the outboard edge of the fill to at least 1 ft depth or double the specified rock diameter
- Fine grained running surface
- Horizontal datum
- Road outsloped 2-4% depending on road grade
- Keyway cut into original ground to support armor from base
- Woven geotextile
- Coarse rock at base protects fill

Cross section perpendicular to watercourse
- Erosion resistant running surface armored with angular rock similar to or greater in size than existing rocks found up or downstream from crossing. Armor extends to 100 year flood level.
- Coarse rock at base
- Filler fabric at base of rock
- Apron

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / Fax: 707-773-1451 / www.pacificwatershed.com

Typical Drawing #6
Ten Steps for Constructing a Typical Armored Fill Stream Crossing

1. The two most important points are:
 A) The rock must be placed in a “U” shape across the channel to confine flow within the armored area. (Flow around the rock armor will gully the remaining fill. Proper shape of surrounding road fill and good rock placement will reduce the likelihood of crossing failure).
 B) The largest rocks must be used to butress the rest of the armor in two locations: i) The base of the armored fill where the fill meets natural channel. (This will butress the armor placed on the outboard fill face and reduce the likelihood of it washing downslope). ii) The break in slope from the road tread to the outer fill face. (This will butress the fill placed on the outer road tread and will determine the “base level” of the creek as it crosses the road surface).

2. Remove any existing drainage structures including culverts and Humboldt logs

3. Construct a dip centered at the crossing that is large enough to accomodate the 100-year flow event and prevent diversion (C-D, E-F).

4. Dig a keyway (to place rock in) that extends from the outer 1/3 of the road tread down the outboard road fill to the point where outboard fill meets natural channel (up to 3 feet into the channel bed depending on site specifics) (G-H, I-J).

5. Install geofabric (optional) within keyway to support rock in wet areas and to prevent winnowing of the crossing at low flows.

6. Put aside the largest rock armoring to create 2 butresses in the next step.

7. Create a butress using the largest rock (as described in the site treatments specifications) at the base of fill. (This should have a “U” shape to it and will define the outlet of the armored fill.)

8. Backfill the fill face with remaining rock armor making sure the final armored area has “U” shape that will accomodate the largest expected flow (K-L).

9. Install a second butress at the break in slope between the outboard road and the outboard fill face. (This should define the base level of the stream and determine how deep the stream will backfill after construction) (M-N).

10. Back fill the rest of the keyway with the unsorted rock armor making sure the final armored area has a “U” shape that will accomodate the largest expected flow (O-P).
Typical Ditch Relief Culvert Installation

1) The same basic steps followed for stream crossing installation shall be employed.
2) Culverts shall be installed at a 30 degree angle to the ditch to lessen the chance of inlet erosion and plugging.
3) Culverts shall be seated on the natural slope or at a minimum depth of 5 feet at the outside edge of the road, whichever is less.
4) At a minimum, culverts shall be installed at a slope of 2 to 4 percent steeper than the approaching ditch grade, or at least 5 inches every 10 feet.
5) Backfill shall be compacted from the bed to a depth of 1 foot or 1/3 of the culvert diameter, which ever is greater, over the top of the culvert.
6) Culvert outlets shall extend beyond the base of the road fill (or a flume downspout will be used). Culverts will be seated on the natural slope or at a depth of 5 feet at the outside edge of the road, whichever is less.
Typical Designs for Using Road Shape to Control Road Runoff

Inslope
- Retain ditch
- Inslope 4%
- Berm optional
- Horizontal reference

Outslope
- No ditch
- Horizontal reference
- Outslope 2%

Crown
- Retain ditch
- No berm
- Horizontal reference

Outsloping Pitch for Roads Up to 8% Grade

<table>
<thead>
<tr>
<th>Road grade</th>
<th>Unsurfaced roads</th>
<th>Surfaced roads</th>
</tr>
</thead>
<tbody>
<tr>
<td>4% or less</td>
<td>3/8" per foot</td>
<td>1/2" per foot</td>
</tr>
<tr>
<td>5%</td>
<td>1/2" per foot</td>
<td>5/8" per foot</td>
</tr>
<tr>
<td>6%</td>
<td>5/8" per foot</td>
<td>3/4" per foot</td>
</tr>
<tr>
<td>7%</td>
<td>3/4" per foot</td>
<td>7/8" per foot</td>
</tr>
<tr>
<td>8% or more</td>
<td>1" per foot</td>
<td>1 1/4" per foot</td>
</tr>
</tbody>
</table>

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / Fax: 707-773-1451 / www.pacificwatershed.com
Typical Methods for Dispersing Road Surface Runoff with Waterbars, Cross-road Drains, and Rolling Dips

Waterbars (seasonal roads)

Cross-road drain and decompaction (decommissioned roads)

Rolling dips (maintained roads)

Rolling dip spacing dependent on road grade, soil erodibility, and proximity to stream
Rolling dip installation:
1. Rolling dips will be installed in the roadbed as needed to drain the road surface.
2. Rolling dips will be sloped either into the ditch or to the outside of the road edge as required to properly drain the road.
3. Rolling dips are usually built at 30 to 45 degree angles to the road alignment with cross road grade of at least 1% greater than the grade of the road.
4. Excavation for the dips will be done with a medium-size bulldozer or similar equipment.
5. Excavation of the dips will begin 50 to 100 feet up road from where the axis of the dip is planned as per guidelines established in the rolling dip dimensions table.
6. Material will be progressively excavated from the roadbed, steepening the grade until the axis is reached.
7. The depth of the dip will be determined by the grade of the road (see table below).
8. On the down road side of the rolling dip axis, a grade change will be installed to prevent the runoff from continuing down the road (see figure above).
9. The rise in the reverse grade will be carried for about 10 to 20 feet and then return to the original slope.
10. The transition from axis to bottom, through rising grade to falling grade, will be in a road distance of at least 15 to 30 feet.

Table of rolling dip dimensions by road grade

<table>
<thead>
<tr>
<th>Road grade</th>
<th>Upslope approach distance (from up road start to trough)</th>
<th>Reverse grade distance (from trough to crest)</th>
<th>Depth at trough outlet (below average road grade)</th>
<th>Depth at trough inlet (below average road grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td><6</td>
<td>55</td>
<td>15 - 20</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>15 - 20</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>75</td>
<td>15 - 20</td>
<td>1.1</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>85</td>
<td>20 - 25</td>
<td>1.2</td>
<td>0.01</td>
</tr>
<tr>
<td>>12</td>
<td>100</td>
<td>20 - 25</td>
<td>1.3</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / Fax: 707-773-1451 / www.pacificwatershed.com
Typical Sidecast or Excavation Methods for Removing Outboard Berms on a Maintained Road

1. On gentle road segments berms can be removed continuously (see B-B').
2. On steep road segments, where safety is a concern, the berm can be frequently breached (see A-A' & B-B')
Berm breaches should be spaced every 30 to 100 feet to provide adequate drainage of the road system while maintaining a semi-continuous berm for vehicle safety.

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / Fax: 707-773-1451 / www.pacificwatershed.com

Typical Drawing #12
Typical Excavation of Unstable Fillslope on an Upgraded Road

Before

Before drawing with labels:
- Scarps and/or cracks
- Sidecast berm and unstable fill
- Potential failure plane
- Path to stream

After

After drawing with labels:
- Unstable fill is excavated and taken to a stable spoil disposal site or used to fill the ditch and outslope road.
Typical Problems and Applied Treatments for a Decommissioned Stream Crossing

Problem condition (before)

A - Diversion potential

B - Road surface and ditch drain to stream

C - Undersized culvert high in fill with outlet erosion

Treatment standards (after)

A - Diversion prevented by road surface ripping and outsloping using excavated spoils

B - Road surface and ditch disconnected from stream by road surface decomaption and cross-road drains

C - Stream crossing fill completely excavated

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 2070, Petaluma, CA 94953 / Ph: 707-773-1385 / Fax: 707-773-1451 / www.pacificwatershed.com

Typical Drawing #14
Typical Design for Road Decommissioning Treatments Employing Export and In-Place Outsloping Techniques

Export outslope (EPOS)

Springs, seeps or perched water table emerging from cutbank / ditch

Original road surface

Excavate unstable sidecast
Endhaul to stable spoil site

Cut to Here

In-place outslope (IPOS)

Fill to Here

Top of Cut

Original road surface

Excavate unstable sidecast

Cut to Here

Spoil placed against cutbank resulting in partial outslope

Decompacted road surface
Typical Excavation of Unstable Fillslope on a Decommissioned Road

Before

Cracks or scarps
Unstable sidecast

After

Original road surface
Excavate unstable sidecast
Decompacted road surface
Spoil placed against cutbank resulting in partial outslope
Cross-road drain and decompaction (decommissioned roads)

Cross road drain construction will ensure gullies, springs, road runoff and other concentrated flow will no longer collect over long lengths of road causing gully erosion and sediment delivery to streams. Cross road drains will be constructed at approximately 75 ft spacing intervals and these cross road drains will direct road surface runoff off the road onto stable hillslope locations.

Ripping the road surface 16 to 24 inches deep will increase road surface infiltration rates, decompact the road surface, and prevent concentrated runoff. Road ripping will also pulverize the compacted road surface or hardpan and allow for vegetation to establish and recover naturally.
Typical Rock Grade Control Structure Installation at man-made headcuts/knickpoints in a non-fish bearing stream channel

Cross section parallel and perpendicular to watercourse

Notes

The main objective is to create a structure that will not be flanked, undercut, or eroded by the stream.
The critical elements of a successful grade control structure are:
1) Excavating the headcut to a gentler channel gradient over a distance of stream (See road log for details)
2) rock selection- rock should be selected that is resistant to transport during design flows, and has a bell shaped distribution of sizes with the median diameter equivalent to the D50 particle size of the stream at the site of installation (See road log for range of rock diameters).
3) The rock must be placed in a “U” shape that will contain the 100 yr. return interval stream flow, won’t constrict the channel cross sectional area, and be flush with the streambed and not deflect flow.
4) The rock must be imbedded into the channel at least two rock diameters in thickness.
5) The largest rock should be used at the base and top of the grade control structure to buttress the other rock.

Pacific Watershed Associates Inc.
Geologic and Geomorphic Studies • Watershed Restoration • Wildland Hydrology • Erosion Control • Environmental Services
PO Box 4433, Arcata, CA 95518 / Ph: 707-839-5130 / FAX: 707-839-8168 / www.pacificwatershed.com

PWA Typical Drawing #18
Notes

Rolling dip type 1 existing conditions: Type 1 rolling dips are utilized when roads are less than 12-14% grade and there is proximal outfall adjacent to the outboard road to facilitate road drainage.

Design Notes:
1) The berm should be removed for the entire length of the dip.
2) The steeper the road grade the more asymmetrical the dip should be constructed, i.e. the axis of the dip should be closer to the down road side of the dip when the road gets steep. (See PWA typical drawing #11).
3) The dip should be outsloped at 3-4% across the road tread from start to end of each dip, and 8-10% across the outboard fill.
4) The dip will either connect to and drain the ditch or it will only drain the road surface, see road log for specifications.
5) The road tread across the dip or the outlet of the dip may be rocked depending on site specific conditions (see road log).

As-Built Features

1. Inboard ditch
2. Axis of Dip
3. 8%
4. 8%
5. Excavated portion of dip with broad concavity
6. Constructed portion of dip with broad convexity
7. Base of fillslope
8. Inboard ditch
9. Cutslope
10. Fillslope
11. Native Hillside
12. Road Tread
13. Existing Conditions
14. Native Hillside
15. Small Berm
16. 6%
17. 8%
18. 4%
19. 2
20. 4
21. 5
Notes

Rolling dip type 2 existing conditions: Type 2 rolling dips are utilized when roads are less than 12-14% grade and there is no proximal outfall adjacent to the outboard road to facilitate road drainage. These should be employed in areas of road through-cuts generally less than 3 feet tall, and where large wide and/or tall berms exist on the outboard road edge.

Design Notes:
1) The berm or native hillside should be removed for the entire length of the excavated portion of the dip, or, at a minimum through the axis of the dip.
2) The steeper the road grade the more asymmetrical the dip should be constructed, i.e. the axis of the dip should be closer to the down road side of the dip when the road gets steep. (See PWA typical drawing #11).
3) The dip should be outsloped at 3-4% across the road tread and 8-10% across the outboard berm or native hillside. (The road log will specify the length of the outlet breach through-out the large berm or native hillslope).
4) The dip will either connect to and drain the ditch or it will only drain the road surface, see road log for specifications.
5) The road tread across the dip or the outlet of the dip may be rocked depending on site specific conditions (see road log).
Type 3 Rolling Dip Construction (steep slope outslope)

Existing Conditions
Native Hillside

Notes
Rolling dip type 3 existing conditions: Type 3 rolling dips are utilized when roads grades are steeper than 12% grade with little opportunity to create reverse grade for the design vehicle, and there is proximal outfall adjacent to the outboard road to facilitate road drainage.

Design Notes:
1) The berm should be removed for the entire length of the outsloped section.
2) The dip should be outsloped at 2-4% across the road tread and 4-8% across the outboard fill. (The road log will specify the length of road to be type 3 outsloped).
3) The outsloping will rarely connect to and drain the ditch (see road log for specifications).
4) The road tread across the outsloped section or the outboard road will be rocked depending on site specific conditions (see road log).
Steps for ford crossing construction:

1. Remove any existing structures (culverts, logs, large boulders, etc.)
2. Remove all road fill as you dip through the crossing to reach natural stream channel.
3. Establish a "U" shape across the channel at the width specified in the road logs.
4. Grade road approaches to specified slope angle (e.g., 4:1). Approaches may or may not be rocked; follow specifications in the road logs.
Prior to working in and around the active stream channel, proper stream dewatering and avoidance of increasing downstream turbidity should be employed. Stream flows will be isolated upstream of the work area using cofferdams and transported downstream / around the work site through either a pumped diversion (Type 1) or by gravity diversion (Type 2) to keep the stream “live” (flowing) below the work area. An additional dam will be installed downstream of the work areas to capture any subsurface flow that might travel through the construction area. Any “dirty” water will be collected at this location and pumped away from the site where it can infiltrate into the ground without the potential to delivery to the stream and/or be used to wet fill being deposited in the spoil disposal areas.
Typical design drawings of spring box and vaulted screened intake gravity diversion infrastructure

Piped spring box - gravity system

Vaulted screened intake - gravity system
Typical design drawings of spring boxes

Piped spring box - gravity system

- Box cover to prevent contamination
- Backfilled soil
- Clean gravel
- Pipe outlet for distribution
- Screened overflow pipe (returns excess flow to spring)

Perforated spring box - pumped system

- Box cover to prevent contamination
- Backfilled soil
- Cylindrical perforated pipe (concrete or plastic)
- Pump float
- Pump
- Geotextile fabric (wrapped around clean gravel and pipe)
- Clean gravel
- Pipe outlet for distribution
- Screened overflow pipe (returns excess flow to spring)