I. SCOPE

The work shall consist of furnishing materials and installing either barbed, smooth, or woven wire or combinations thereof, and must be constructed to be equal to or exceed, in strength and durability, the following specifications:

Locate fences to help facilitate management of livestock or different land uses and special management areas such as riparian areas, critical eroding areas, pasture types, etc.

For domestic livestock, install fences in areas that will address resource concerns, improve livestock distribution, handling, feeding, watering, and movement of the type of livestock managed.

For horses, consider avoiding the use of barbed wire and steel T-Posts when possible to minimize potential injury, especially when areas of confinement are small.

When installing fences in areas of heavy wildlife movement / traffic (such as riparian areas) consideration should be given to wire types and spacing. Spacing of top and bottom wires should be adequate for the movement of the types of wildlife managed for. Where deer range, the height of fence should be less than 48 inches, space the top two wires 10 inches apart to reduce the hazard of catching deer in the fence. If resource objectives can be met using the Wildlife Friendly Fence Specification (382D), this should be the preferred design for all fences.

Prior to construction of fence, a utility check sheet must be completed to make sure all underground utilities are avoided. The producer/contractor must call 811 for underground service alert information.

II. FENCE TYPES

A. Permanent fence (barbed, woven or smooth wire) types are designed to be in place for a period of many years with minimal maintenance requirements. Therefore, components are designed for a life span of 20 years.

B. Standard Post and Wire Fences are the most common fence type used for controlling all types of livestock. They are suitable as permanent fences in areas that receive moderate to heavy pressure from livestock. They are typically barbed wire or double strand smooth wire.

C. Both High Tensile and non-High Tensile; Woven, Net and Mesh Wire Fences are best suited in areas where tight control is necessary such as with sheep, goats, horses, or hogs.
III. MATERIALS & INSTALLATION SPECIFICATIONS

A. WIRE

All wire will be of new galvanized material and in accordance with criteria outlined in Table 1 which follows ASTM - A 116 (woven wire), and/or ASTM-121 (barbed wire) standards.

Galvanization is critical to rust protection of wire and different classes of galvanization provide different levels of protection. Wire with Class I or Class III galvanization meets the minimum level of treatment required to protect the wire from rust for the expected life span. Wires designated as regular, commercial, or utility grade does not offer the level of treatment to prevent rust.

Most wire manufacturers include wire specifications on fence tags.

<table>
<thead>
<tr>
<th>Table 1. Wire Type Specifications for Barbed, Smooth and Woven Wire Fence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIRE TYPE</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Standard Double Strand Barbed Wire</td>
</tr>
<tr>
<td>High-Tensile Double Strand Barbed Wire</td>
</tr>
<tr>
<td>Standard Smooth Double Strand Wire</td>
</tr>
<tr>
<td>High-Tensile Single Strand Smooth</td>
</tr>
<tr>
<td>Woven Wire, Style 4 – Farm Fence</td>
</tr>
</tbody>
</table>

1. Wire Installation

Fence wire will be stretched to sufficient tension prior to being fastened to posts. Temperature variations must be considered (wire will tighten in cold weather and expand in hot weather).

Wherever possible, wire will be attached to fence post on side receiving most pressure.
2. Wire Attachments

The following criteria will be followed for attaching wires to all posts:

a) Wire clips

- Wire clips should be 12 – 12 ½ gauge galvanized.
- Wire clips or fasteners must be galvanized and similar to strength of fence wire.

b) Staples

9-gauge steel staples with a minimum length of 1½ inches for soft woods (pine) and 1 inch for hardwoods (cedar, oak, juniper, black locust and Osage orange).

- Drive staples diagonally to the wood grain at a slight downward angle (upward if pull is up) to avoid splitting the post.
- Space will be left between post and staple to allow free movement of wire and to avoid damage to zinc coating.

** See figures above to view the proper use of staples for fence construction.
c) **Wire Splices**

1. Standard Wire - Western Union splices, as shown below, shall have a minimum of 8 wraps on each side of center, tightly wound and closely spaced.

 ![Western Union Splice](image)

2. Standard and High Tensile Wire - Compression fittings or splice sleeves will have a tensile strength not less than 80% of the wire. Ends of wire will be overlapped at least 2 inches with sleeves crimped and installed according to manufactures specifications. Two 3/8 in. sleeves or one ¾ in. sleeve will be installed at each splice.

3. Standard wire may also have "loop" splices where the wire has a minimum of 8 wraps on each side. (Western union is the preferred method, followed by compression fittings, but "loop" splicing is acceptable).

4. High Tensile Wire – “The Figure 8”, as shown below, can be used by overlapping wires 2 inches, looping each wire over and back through, then pulling together. As fence is stretched, the splice will tighten.

 ![Figure-8 Splice](image)

B. **POSTS**

Type, height, size, and spacing of posts will be used that best provides the needs for the types of fences required and is best suited for the topography of the landscape.

1. **Post Materials**

 a) **Wood Post**

 When wooden posts are used, the following criteria must be met:

 - Must be sound and free from decay
 - Minimum lengths will allow for required buried depth and fence height plus
at least 2 inches of post above top wire for wire fences (to the top board of board fences).

b) Steel pipe posts

When steel pipe posts are used, the following criteria must be met:

- Will be of good quality.
- Will have the top permanently capped to prevent rainfall and small animals from entering the post.
- Minimum lengths will allow for required buried depth and fence height plus at least 1 inch of post above top wire for wire fences.

c) Steel “T” or “U Section” posts

When Steel “T” or “U Section” posts are used, the following criteria must be met:

- Shall be of high carbon steel weighing are 1.33 lbs/ft.
- Will have an anchor plate and be studded, embossed, or punched for wire attachment.
- Will be new, galvanized, enameled and baked, or painted with weather resistant steel paint and components will be repainted if rusting occurs.
- Minimum lengths will allow for minimum setting depth and fence height plus at least 2 inches of post above top wire.

2. **Post Spacing**

a) Line (Brace) Post

To maintain the strength and life of the practice, line posts (wood or steel) should be placed at intervals suitable for the site conditions. On flat ground with little stress on the wires, buried posts can be placed after 20 t-posts. When topography is sloped and the fence following the slope, brace posts should be placed more frequently and may need to be located at the end of every 5 t-posts. Additionally, the brace posts should be placed at every low point on undulating topography, with an earth-anchor used to add strength.

b) T-Posts

T-posts or should be placed at 13 – 20 feet intervals, depending on topography and site conditions. If they are placed from 13-15’ spacing a stay is not required. If they are placed at any distance greater than 15’, a stay is required.
Table 2. Line Post Requirements

Wood posts do not need to be new materials (Railroad Ties and Power Poles are adequate); however, all posts shall meet the minimum criteria for durability and protective coating. Wood posts need to be sound and free from decay, with all limbs trimmed substantially flush with the body. Post shall be sufficient length to meet buried depth, fence height requirement plus 2 inches. Lengths listed below are based on a 42-inch top wire height.

<table>
<thead>
<tr>
<th>LINE POST TYPE</th>
<th>MINIMUM DIAMETER</th>
<th>MINIMUM SETTING DEPTHS</th>
<th>MINIMUM LENGTHS</th>
<th>MINIMUM PROTECTIVE COATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood-juniper, cedar</td>
<td>4-1/2 inches</td>
<td>24 inches</td>
<td>6 feet</td>
<td>None</td>
</tr>
<tr>
<td>Wood other than above</td>
<td>4-1/2 inches</td>
<td>24 inches</td>
<td>6 feet</td>
<td>Complete penetration of the sapwood with approved treatment materials. Pressure-treated, entire length of post. See note below.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINE POST TYPE</th>
<th>MINIMUM DIAMETER</th>
<th>MINIMUM DEPTHS</th>
<th>MINIMUM LENGTHS</th>
<th>MINIMUM PROTECTIVE COATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard "T" or "U" section steel rolled with high carbon steel and studded, embossed, or punched for wire attachment with anchor plate.</td>
<td>1.33 pounds per foot of length, exclusive of anchor plates</td>
<td>16” – Bury the spade + 1 knob</td>
<td>5 feet</td>
<td>Hot-dip galvanized, or one or more coats of high-grade, weather-resistant steel paint, or enamel-applied and baked.</td>
</tr>
<tr>
<td>Steel, round</td>
<td>2-3/8 inches</td>
<td>2 ft. – set in concrete entire depth.</td>
<td>6 feet</td>
<td>Schedule 40 steel pipe. Wrap wire or place a metal stay on wires next to post to prevent vertical wire movement.</td>
</tr>
<tr>
<td>Live trees</td>
<td>6 inches at top wire</td>
<td>Wire not wrapped or stapled directly to tree. A wood slat is nailed to the side of the tree and the wires stapled to the slat.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Line Post and Stay Spacing

<table>
<thead>
<tr>
<th>FENCE TYPE</th>
<th>LINE POST SPACING (MAXIMUM INTERVAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 or 4 Wire Fence & Woven Wire</td>
<td>13-15 feet without stays</td>
</tr>
<tr>
<td></td>
<td>15-20 feet with one stay mid-way between posts</td>
</tr>
<tr>
<td>3-Wire or 4-Wire Suspension Fence</td>
<td>80 to 100 feet (not to exceed 100 feet). Stays shall be spaced not to exceed 15 feet in the line.</td>
</tr>
<tr>
<td>Heavy Snow Country and Let-Down Fences</td>
<td>15 feet between wooden posts – wood/fiberglass stays at approximately 4-foot intervals.</td>
</tr>
</tbody>
</table>
C. BRACE ASSEMBLIES

Braces determine the structural soundness and longevity of any fence line. Corners are braces that are located where there are changes in fence direction due to slope and alignment changes in the fence line. If any brace fails, there is a loss of wire tension and fence effectiveness. Design and spacing are determined from factors such as number of wires used, type of wire, soil type, terrain and animals to be restrained.

Fence braces fail because of structural failure, soil movement, or failure of corner or end post pullout. Structural failure of an end brace is usually due to improper depth placement, poorly selected materials, or improper design. By carefully designing fence braces and properly proportioning and sizing the members, structural failures can be all but eliminated. Fence braces also fail when the soil is too weak to support the load, which allows the fence brace to move through the soil. Soil failures can usually be eliminated by using larger posts and proper placement. Corner post pullouts, when braces lift out of the ground, can be eliminated by using longer fence braces and placing cleats on the post.

Bracing of anchor (pull) posts is required at all corners, gates and ends of the fence line. They are also needed at slope and alignment changes of the fence lines. See figures for selection criteria and design specifications of single and double brace assemblies.

1. In-line Pull (H-Brace) Post

In-Line Pull Post assemblies are located in straight sections at lengths not greater than 1320 feet (length of a spool of wire) or where there are sudden changes in elevation, such as the bottom and top of steep slopes. Any of these types can be used:

- Single Post Pull Assembly
- H-Brace Pull Assembly
- Three-Post Welded Pull Assembly.

a) **Wood** - On single H-Braces, a minimum of 4 inch top diameter of treated timber or durable wood listed above for upright post and a 4 inch diameter for the horizontal cross post.

b) **Steel** - Minimum 2-3/8 inches outside diameter (OD) metal pipe or equivalent. Steel cross-post must be a minimum of 2-3/8 inches OD.
2. Corner Gate and End/Gate H-Brace Assembly

a) Corner braces are required at all points where the fence alignment has a change of 20 degrees or more and the pull is from two directions.

b) End braces are required where fence ends and on both sides of gate openings.

- **Wood** - (Pressure treated or durable wood) shall have minimum top diameter of 5 inches, 7 ft. in length, and be set firmly 3 ft. in the ground. Cross post will have a minimum 4 inch top diameter.

- **Steel** - Minimum 2-3/8 inch steel pipe or equivalent, 7 ft. in length, set 3 ft. in ground. Steel cross-posts must be a minimum 2 inch diameter.

Allow newly-installed braces and assemblies to settle and/or pack dirt sufficiently around all post; do not over-tighten wires.

D. GATES

1. Wire gates shall be made of the same materials of the same kind, grade and size specified for the field fence and stays will not exceed a 4-foot spacing.

2. Gates constructed of wood, panels, aluminum or steel will have galvanized or painted hinges and be attached directly to a braced end / gate post.

E. ANCHOR POST

1. Attaching wire to Anchor / Pull Posts - For standard wire fences, line wires will be attached to anchor (pull) posts by two complete wraps around post, stapled (wood posts) or wired (steel posts) and ends tightly twisted around stretched wire at least six times.

For woven or mesh wire, determine amount of wire needed to fully wrap around post twice then remove enough vertical stays to provide the length needed. The wire ends are then attached as described above.

The figure below shows the proper way of attaching diagonal strainer wire to anchor or pull posts:
2. **Setting Posts**

 a) When backfilled with dirt, posts will be centered in a hole at least 6 inches larger in diameter than the diameter of the post and tamped in 4 to 6 inch lifts up to ground level.

 b) All steel posts will be backfilled with concrete. When backfilled with concrete, posts will be centered in a hole that is a minimum of 12 inches in diameter. The hole will be completely filled and crowned (mounded) at post base to prevent water from ponding around post at ground level.

 c) All dug corner post will be set at a depth of 3 feet.

 d) All posts will be vertically leveled upon placement.

3. **Horizontal H-Brace Assembly**

 a) Horizontal Braces (H Brace) are the most commonly used design in the construction of post braces. An example of an H Brace is shown below:
b) Placement of the Horizontal brace should be a minimum of 2/3 height of the top wire height and no higher than 8 inches from the top of the post.

c) Diagonal braces will be attached to brace post a minimum of 6 feet from anchor post and set into concrete as specified for steel pipe posts or attached to a steel reinforced concrete block.

d) For slip braces, the steel reinforced concrete block must equal or exceed 225 square inches of surface area (Cinder pads are unacceptable).

e) The slip brace must be at least 3 ½ inches width.

f) Wood posts used for horizontal braces will be straight and free of splintering. The brace post and anchor posts should be notched to achieve a secure fit and the horizontal brace should be attached using screws, nails, or steel dowel pin (drilled to fit, and at least 2 inches into each post).

 g) Steel and angle iron members will be installed into a ¾ - 1 inch notch in brace posts.
4. **Tension / Brace (Guy) Wires (where applicable)**

 a) Two complete loops of 9-gauge smooth wire, 12½ gauge double strand barbed or smooth wire or 12½ gauge high tensile smooth wire.

 b) Wire will be twisted or strained to provide necessary rigidity with a twist rod that should be 18-24 inches long and will remain in place approximately midway along brace wire.

 c) For horizontal braces, brace wire will be double wrapped and stapled to brace post at a height 4-6 inches above brace member and anchor (pull) post at a point 4 inches above the ground level.

 d) If earth-anchor is used, the tension wire extending to the earth-anchor must be one continuous loop.

 e) An illustration of a tension wire being used for the H Brace is shown below:

 ![Illustration of tension wire](image)

F. STAYS

1. When line post spacing exceeds the maximum without stays, stays will be included and spaced at equal distances between posts with spacing not to exceed the maximum specified in Table 3.

2. Length of stays will be fence height plus 2 inches and installed so that stays swing free of the ground and allow fence to move when touched by animal.

3. Stays will be constructed of durable materials designed for this purpose.
TABLE 4. Brace Member (Compression) Requirements for Barbed and Smooth Wire Fence

<table>
<thead>
<tr>
<th>BRACE MEMBER TYPE</th>
<th>MINIMUM DIAMETER/WEIGHT</th>
<th>MINIMUM LENGTH</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood, horizontal</td>
<td>3.5 inches</td>
<td>6 feet</td>
<td>Juniper, cedar, no treatment needed. All others pressure-treated, entire length of post.</td>
</tr>
<tr>
<td>Wood, diagonal</td>
<td>3.5 inches</td>
<td>8 feet</td>
<td>Juniper, cedar, no treatment needed. All others pressure-treated, entire length of post.</td>
</tr>
<tr>
<td>Steel, round, horizontal, pipe or tubular steel</td>
<td>2 inches OD, 2.25 lb./ft. or equivalent</td>
<td>6 feet</td>
<td>None</td>
</tr>
<tr>
<td>Steel, round, diagonal, pipe or tubular steel</td>
<td>2 inches OD, 2.25 lb./ft. or equivalent</td>
<td>8 feet</td>
<td>None</td>
</tr>
<tr>
<td>Steel, angle iron, diagonal (when used with and all metal brace)</td>
<td>2 inches x 2 inches x 0.25-inch</td>
<td>8 feet</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 5. Brace Post Requirements for Barbed and Smooth Wire Fence

Posts need not be new materials, (Railroad Ties and Power Poles are adequate); however, all posts shall meet the minimum criteria for durability and protective coating and be sound and free from decay, with all limbs trimmed substantially flush with the body. Lengths listed below are based on a 42-inch top wire height. Steel pipe needs to be free from corrosion and pitting.

<table>
<thead>
<tr>
<th>BRACE POST TYPE</th>
<th>MINIMUM DIAMETER/WEIGHT</th>
<th>MINIMUM SETTING DEPTHS</th>
<th>MINIMUM LENGTH</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood-juniper, cedar, osage orange, black locust, redwood, oak or pine (See other)</td>
<td>5 inches</td>
<td>3 feet or 1/3 of post length</td>
<td>7 feet</td>
<td>If pine is used it must be pressure treated the entire length of the post. (See Note Below*)</td>
</tr>
<tr>
<td>BRACE POST TYPE</td>
<td>MINIMUM DIAMETER/WEIGHT</td>
<td>MINIMUM SETTING DEPTHS</td>
<td>MINIMUM LENGTH</td>
<td>OTHER</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Steel, round</td>
<td>2-3/8 inches outside diameter (OD), 3.65 lb./ft. or equivalent</td>
<td>3 feet – set in concrete entire depth. No concrete needed if welded to compression brace.</td>
<td>7 feet</td>
<td>Schedule 40 steel pipe will meet these minimum requirements. Place a metal stay on wires, next to the pipe post so wire cannot be moved vertically.</td>
</tr>
<tr>
<td>Live trees</td>
<td>6 inches at top wire</td>
<td>Wire not wrapped or stapled directly to tree. A wood slat is nailed to the side of the tree and the wires stapled to the slat.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Wood should be treated with EPA approved wood preservative.

Rock cribs can be used in rocky areas for corner bracing where soil does not permit post holes to be dug
Table 6. Stay Requirements

<table>
<thead>
<tr>
<th>STAY TYPE</th>
<th>MINIMUM DIAMETER/WEIGHT</th>
<th>MINIMUM LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood - Preferred in high snow areas</td>
<td>1.5 inches diameter</td>
<td>Fence wire height + 2 inches</td>
</tr>
<tr>
<td>Wire – Not to be used in snow areas</td>
<td>9.5 gauge twisted, manufactured for this purpose; galvanized-zinc coated</td>
<td>4 inches + distance between bottom and top wire</td>
</tr>
<tr>
<td>Fiberglass</td>
<td>Especially fabricated for this purpose</td>
<td>Fence wire height + 2 inches</td>
</tr>
</tbody>
</table>

Table 7. Fence Height and Wire Spacing Requirements

<table>
<thead>
<tr>
<th>INTENDED USE</th>
<th>FENCE HEIGHT & WIRE SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic livestock control with wildlife consideration.</td>
<td>42 inches preferred height – maximum height 48 inches for the top wire. Wire spacing of the top two line wires shall be a minimum of 10 inches apart at the post location. Bottom wire will be a minimum of 14 inches from the ground; 16 inches for antelope (see below for additional considerations for wildlife).</td>
</tr>
<tr>
<td>• Woven wire is not an alternative for wildlife friendly fencing.</td>
<td></td>
</tr>
<tr>
<td>Domestic livestock control with wildlife consideration where the top wire exceeds 44 inches. Fence height shall not exceed 48 inches.</td>
<td>If wire height exceeds 44 inches, the distance between the top wire and the second wire will be at least 12” and provisions must be made at identified crossings for wildlife movement; both over and under the fence. These areas will not exceed 1/4-mile apart and there must be a minimum of one per fence. The fence in these designated crossing locations will not exceed 42 inches at the top wire and must include a minimum of one of the alternatives listed below to allow for wildlife movement (*see Wildlife Alternatives below)</td>
</tr>
<tr>
<td>• This applies to woven wire fence.</td>
<td></td>
</tr>
</tbody>
</table>

Wildlife Alternatives. (1. Smooth wire on top and/or bottom, top wire tied down between two posts, bottom wire tied up between two posts, 2. PVC on top wire for entire length between two posts; raise bottom wire in that stretch, lower top wire in that stretch, 3. Wood rail at top wire between two posts maximum 38 inches high (38-inch elk jump), 4. Extra stays so top and second wire will not cross, etc.).

Sheep fences (Woven wire) should have gates no taller than 36 inches so wildlife can jump over or any other means to allow control of the sheep while allowing movement across fences. Leave gates open when sheep are not present to accommodate all wildlife movement. Woven wire fences will have 1 or 2 barbed or smooth wire above the woven wire.
IV. CLEARING THE FENCE LINES

Establish fence boundaries on a map or aerial photograph prior to clearing the fence line. Locate underground utilities prior to clearing the fence line. Once the utilities have been located, remove brush, loose rocks, trees, and tall grass from the fence line. Fence construction time is considerably reduced when the fence line is well cleared ahead of time. Fence appearance is also improved.

V. SPECIAL CONSIDERATIONS

Crossing Streams or Draws

When the fence crosses landscape depressions, draws, or swales, and the bottom line wire is more than 20 inches above the ground at the low spot, the use of an earth-anchor may be necessary to maintain fence height. When crossing the streams or very deep draws, the fence may be dead-ended on each side of the crossing by use of braces. The section across the stream may be removable, a breakaway type, or swinging picket-type fence.
VI. INSTALLATION

The installation of the fence shall conform to the figures and to the drawings. All posts shall be placed to the required depth and shall be firmly embedded so that there is less than 1 inch of horizontal movement at the top of post when a horizontal force of 80 lbs. is applied.

The completed job shall be workmanlike and present a good appearance. The installer and other persons will conduct all work in accordance with proper safety procedures.

VII. BASIS OF ACCEPTANCE

After the fence has been installed, a site inspection will be made to determine if the materials and placement adhered to the specification. A practice certification form will be completed by the planner.

VIII. MAINTENANCE

A properly maintained fence is an asset to your property. This practice will require you to perform periodic maintenance. Some items to be observed and corrected are:

- Tension of wire, broken wires.
- Post alignment, post stability.
- Broken or bent stays.
*** The following figures are examples. Not all drawings shown meet our specifications. Please refer to the previous tables and narratives for California fence specification requirements.

Stays only needed if line posts are greater than 15’

Wildlife option is smooth wire on the bottom

FIGURE 1
WOVEN WIRE WITH 2 STRANDS BARBED WIRE

FIGURE 3.

CORNER AND ANGLE BRACE FENCE

FIGURE 4.
FIGURE 6 – CORNER BRACE ASSEMBLY
FIGURE 7 - SINGLE POST CORNER OR ANGLE BRACE ASSEMBLY

FIGURE 8 – Pull Assembly

H-Brace Pull Assembly

- 4 in. nominal wooden
- 2 3/8 in. nominal pipe, capped

- Top wire
- 36 to 44 inches
- Point A
- Two loops twisted of either a 9-gage smooth malleable galvanized wire, a 12 1/2-gage galvanized HTS wire, or a double strand barbed or smooth wire.

Concrete if steel pipe is used
- 12 in.
- 3 ft min.

Single Post Pull Assembly

- 4 in. nominal wooden
- 2 3/8 in. nominal pipe, capped

- Top wire
- 36 to 44 inches
- Point A
- Point B

Concrete if steel pipe is used
- 12 in.
- 3 ft min.

Soil surface

Depth for driven pipe:
- Pipe size
- Depth driven
- 2 3/8 in.
- 5 ft
- 2 7/8 - 4 1/2 in.
- 4 ft
- 5 in.
- 3 ft

Note: Distance from point A to B must be a minimum twice the height between the top wire and the ground surface.